欧美伦理一区二区-91视频网页-国产高清在线视频-国产黄色在线-免费的黄色-日本精品视频在线观看

新聞動態
NEWS
Location:Chinese Academy of Sciences > NEWS  > News in field Graphene

Scientists Create Graphene/Nanotube Hybrid Cathode for Cheap, Flexible, Dye-Sensitized Solar Cells

Come: Chinese Academy of Sciences    Date: 2014-12-25 10:48:55


Rice University scientists have invented a novel cathode that may make cheap, flexible dye-sensitized solar cells practical.
Pei Dong, a postdoctoral researcher at Rice, holds a sample of a graphene/nanotube hybrid material grown on nickel and being tested as an efficient cathode for cheap, flexible, dye-sensitized solar cells. Dong is lead author of a new paper about the discovery.

The Rice lab of materials scientist Jun Lou created the new cathode, one of the two electrodes in batteries, from nanotubes that are seamlessly bonded to graphene and replaces the expensive and brittle platinum-based materials often used in earlier versions.The discovery was reported online in the Royal Society of Chemistry’s Journal of Materials Chemistry A.Dye-sensitized solar cells have been in development since 1988 and have been the subject of countless high school chemistry class experiments. They employ cheap organic dyes, drawn from the likes of raspberries, which cover conductive titanium dioxide particles. The dyes absorb photons and produce electrons that flow out of the cell for use; a return line completes the circuit to the cathode that combines with an iodine-based electrolyte to refresh the dye.

While they are not nearly as efficient as silicon-based solar cells in collecting sunlight and transforming it into electricity,dyesensitized solar cells have advantages for many applications, according to co-lead author Pei Dong, a postdoctoral researcher inLou’s lab. “The first is that they’re low-cost, because they can be fabricated in a normal area,” Dong said. “There’s no need for a clean room.

They’re semi-transparent, so they can be applied to glass, and they can be used in dim light; they will even work on a cloudy day.“Or indoors,” Lou said. “One company commercializing dye-sensitized cells is embedding them in computer keyboards and mice so you never have to install batteries. Normal room light is sufficient to keep them alive.”

The breakthrough extends a stream of nanotechnology research at Rice that began with chemist Robert Hauge’s 2009 invention of a “flying carpet” technique to grow very long bundles of aligned carbon nanotubes. In his process, the nanotubes remained attached to the surface substrate but pushed the catalyst up as they grew. The graphene/nanotube hybrid came along two years ago. Dubbed “James’ bond” in honor of its inventor, Rice chemist James Tour, the hybrid features a seamless transition from graphene to nanotube. The graphene base is grown via chemical vapor deposition and a catalyst is arranged in a pattern on top. When heated again, carbon atoms in an aerosol feedstock attach themselves to the graphene at the catalyst, which lifts off and allows the new nanotubes to grow. When the nanotubes stop growing, the remaining catalyst (the “carpet”) acts as a cap and keeps the nanotubes from tangling.

The hybrid material solves two issues that have held back commercial application of dye-sensitized solar cells, Lou said. First, the graphene and nanotubes are grown directly onto the nickel substrate that serves as an electrode, eliminating adhesion issues that plagued the transfer of platinum catalysts to common electrodes like transparent conducting oxide.
Second, the hybrid also has less contact resistance with the electrolyte, allowing electrons to flow more freely. The new cathode’s charge-transfer resistance, which determines how well electrons cross from the electrode to the electrolyte, was found to be 20 times smaller than for platinum-based cathodes, Lou said.

The key appears to be the hybrid’s huge surface area, estimated at more than 2,000 square meters per gram. With no interruption in the atomic bonds between nanotubes and graphene, the material’s entire area, inside and out, becomes one large surface. This gives the electrolyte plenty of opportunity to make contact and provides a highly conductive path for electrons. Lou’s lab built and tested solar cells with nanotube forests of varying lengths. The shortest, which measured between 20-25 microns, were grown in 4 minutes. Other nanotube samples were grown for an hour and measured about 100-150 microns. When combined with an iodide salt-based electrolyte and an anode of flexible indium tin oxide, titanium dioxide and light-capturing organic dye particles, the largest cells were only 350 microns thick — the equivalent of about two sheets of paper — and could be flexed easily and repeatedly.

Tests found that solar cells made from the longest nanotubes produced the best results and topped out at nearly 18 milliamps of current per square centimeter, compared with nearly 14 milliamps for platinum-based control cells. The new dye-sensitized solar cells were as much as 20 percent better at converting sunlight into power, with an efficiency of up to 8.2 percent, compared with 6.8 for the platinum-based cells.

Based on recent work on flexible, graphene-based anode materials by the Lou and Tour labs and synthesized high-performance dyes by other researchers, Lou expects dye-sensitized cells to find many uses. “We’re demonstrating all these carbon nanostructures can be used in real applications,” he said. Yu Zhu, a Rice alumnus and now an assistant professor at the University of Akron, Ohio, is co-lead author of the paper. Co-authors include postdoctoral researcher Jingjie Wu and graduate students Jing Zhang and Sidong Lei, all of Rice; and Feng Hao, a postdoctoral researcher, and Professor Hong Lin of Tsinghua University, China. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of materials science and nanoengineering and of computer science. Hauge is a distinguished faculty fellow in
chemistry and in materials science and nanoengineering with the Richard E. Smalley Institute for Nanoscale Science and
Technology. Lou is an associate professor and associate chair of the Department of Materials Science and NanoEngineering.

The research was s upported by the Welch Foundation, the Air Force Office of Scientific Research and its Multidisciplinary University Research Initiative (MURI), the Department of Energy, the Lockheed Martin LANCER IV program, Sandia National Laboratory and the Office of Naval Research MURI.

< Previous Layered graphene oxide hosts lithium ...Unpaired spins make graphene magnetic Next >

?
Tel:+86-28-85241016,+86-28-85236765    Fax:+86-28-85215069,+86-28-85223978    E-mail:carbon@cioc.ac.cn,times@cioc.ac.cn,nano@cioc.ac.cn
QQ:800069832    Technical Support ac57.com
Copyright © Chengdu Organic Chemicals Co. Ltd., Chinese Academy of Sciences 2003-2025. manage 蜀ICP備05020035號-3
主站蜘蛛池模板: 日韩精品无码一区二区三区 | www亚洲视频 | 91久久香蕉青青草原娱乐 | 香蕉久久夜色精品国产 | 精品国产理论在线观看不卡 | 天码毛片一区二区三区入口 | 天天碰夜夜操 | 国产高清免费观看 | 九九九九在线视频播放 | 亚洲在线视频网站 | 成年女人在线视频 | 在线视频免费观看a毛片 | 国产高清免费观看 | 亚洲一区毛片 | 美女黄页网站免费进入 | 国产成人影院一区二区 | 99视频在线| 波多野结衣一级片 | 国产com | 美国三级网站 | 亚洲国产成人超福利久久精品 | 亚洲综合一区二区精品久久 | 日本乱理伦片在线观看网址 | 久久不见久久见免费影院www日本 | 男人毛片 | 美女张开腿让男人捅的视频 | 一本色道久久综合狠狠躁 | 国产成人久久精品二区三区 | 国产一区私人高清影院 | 一级做a爰全过程免费视频毛片 | 欧美一级亚洲一级 | 伊人成人在线视频 | 看日本真人一一级特黄毛片 | 91久久久久久久 | a级高清毛片 | 91免费永久在线地址 | 久久午夜网 | 欧美 日韩 国产 成人 在线观看 | 日本高清色本在线www | 日韩欧美亚洲综合久久99e | 99国产在线|