欧美伦理一区二区-91视频网页-国产高清在线视频-国产黄色在线-免费的黄色-日本精品视频在线观看

新聞動態
NEWS
Location:Chinese Academy of Sciences > NEWS  > News in field Carbon Nanotubes

Shedding more light on CNTs

Come: Chinese Academy of Sciences    Date: 2013-02-21 17:25:29


The first detailed study of triple-walled carbon nanotubes using resonant Raman spectroscopy has revealed that the outer walls of both double- and triple-walled CNTs protect the innermost tubes from interacting with their environment. The finding has allowed these technologically important nanostructures to be studied in more detail than ever before.


S- D- and TWCNTs

A double-walled carbon nanotube (DWCNT) consists of two concentric single-walled carbon nanotubes (SWCNTs) coupled together by weak van-der-Waals interactions. The inner and outer tubes can either be semiconducting or metallic. Since the outer tube is in direct contact with its environment, it can be difficult to obtain accurate information about this tube fundamental physical properties.
Thomas Hirschmann and Paulo Araujo at the Massachusetts Institute of Technology and colleagues studied individual and bundled TWCNTs. A TWCNT can be thought of as a DWCNT wrapped around a SWCNT. The researchers found that the outer tube in this structure protects the inner ones from interacting with their environment, thus allowing them to be studied more accurately. An unrolled TWCNT can be thought of as a trilayer graphene ribbon, and has all the outstanding electronic and mechanical properties that this carbon material boasts.
The team, which is led by Mildred Dresselhaus and that includes scientists from the University of Hamburg, Germany, the Nagaoka University of Technology in Japan and Shinshu University, also in Japan, used a fast working but still very sensitive Raman spectrometer. The system is able to detect and characterize the same individual TWCNT with different laser lines under identical experimental conditions. “Only a few groups in the world are equipped with such an instrument capable of characterizing individual CNTs in this way,” says Hirschmann.
“The analyses allowed us to study fundamental properties such as intertube mechanical coupling, wall-to-wall (WtW) distance and metallicity- and curvature-dependent intertube interactions,” he told nanotechweb.org. “Such knowledge will be of fundamental importance for technological applications that exploit these nanostructures.”
The researchers characterized five individual TWCNTs in detail and found that the WtW distance between the inner two tubes in all the samples ranges from 0.323 to 0.337 nm. These values are larger than the WtW distance observed in previously studied DWCNTs (0.284–0.323 nm), and lie closer to the interlayer distance in graphene itself (0.335 nm). “We also found that the intertube interactions affect innermost nanotubes differently according to which metallicity they have and that the elusive mechanical coupling between the radial breathing mode, or RBM, of concentric nanotubes does not exist, even for relatively short WtW distances of 0.323 nm,” added Hirschmann. “This is an important finding and shows that, although the TWCNTs are hybrid systems, the tubes themselves are mostly independent of one another.”
The RBM is the most important spectroscopic signature of a CNT, whose frequency of vibration is known to be inversely proportional to the tube diameter, he explained. These so-called first order Raman features provide a wealth of information on the electronic and vibrational structure of these nanomaterials.
“Our analyses also shed more light on the van-der-Waals forces mediating the interactions in concentric ordered CNTs, such as DWCNTs and TWCNTs,” said Araujo. “These low-energy interactions are important for technology applications because they affect the electronic and vibrational properties of the tubes.”
The team is now busy analysing shielding phenomena and intertube interaction effects in multi-walled carbon nanotube systems. Here, intertube interactions not only affect the measured RBMs but also other Raman features. “One of our main goals is to find better conditions in which to grow CNTs by controlling interactions between nanotubes walls,” said Hirschmann. “To this end, we are working closely with Yoong Ahm Kim and colleagues at Shinshu University, who are experts when it comes to synthesising these nanomaterials.”
The present research is detailed in ACS Nano.

< Previous CNT transistors detect cancer biomarkersChemistry resolves toxic concerns abo... Next >

?
Tel:+86-28-85241016,+86-28-85236765    Fax:+86-28-85215069,+86-28-85223978    E-mail:carbon@cioc.ac.cn,times@cioc.ac.cn,nano@cioc.ac.cn
QQ:800069832    Technical Support ac57.com
Copyright © Chengdu Organic Chemicals Co. Ltd., Chinese Academy of Sciences 2003-2025. manage 蜀ICP備05020035號-3
主站蜘蛛池模板: 成人做爰全过程免费看网站 | 一级黄色毛片播放 | 欧美成人黄色 | 99久久精品免费观看区一 | 三级做人爱c视频18三级 | 亚洲天堂2018av | 欧美a级毛片免费播敢 | 最新三级网站 | 男人天堂手机在线 | 日韩欧美一区二区三区免费观看 | 国产免费高清在线精品一区 | 中国美女一级看片 | 日韩欧美一区二区精品久久 | 久久有这有精品在线观看 | 亚洲成人中文 | 三级网址在线 | 精品欧美一区二区在线观看欧美熟 | 中国欧美一级毛片免费 | 日本大黄网站 | 99爱视频99爱在线观看免费 | 自拍偷拍视频在线观看 | 男人的天堂在线观看视频不卡 | 国产亚洲91| 一本色道久久88加勒比—综合 | 午夜影院亚洲 | 男人天堂视频网 | 亚洲一区浅井舞香在线播放 | 在线精品一区二区三区 | 国产福利不卡一区二区三区 | 免费在线成人网 | 成人精品视频一区二区在线 | 精品国产网 | 巨大热杵在腿间进进出出视频 | 亚洲国产精品久久久久久 | 国产精品露脸脏话对白 | 国产精品成人在线 | 贵州美女一级纯黄大片 | 可以看的黄网 | 欧美精品久久一区二区三区 | 亚洲精品国产啊女成拍色拍 | 一级毛片免费视频网站 |