欧美伦理一区二区-91视频网页-国产高清在线视频-国产黄色在线-免费的黄色-日本精品视频在线观看

新聞動態
NEWS
Location:Chinese Academy of Sciences > NEWS  > Carbon Nanotubes Carbon Nanotubes

Shedding more light on CNTs

Come: Chinese Academy of Sciences    Date: 2013-02-21 17:25:29


The first detailed study of triple-walled carbon nanotubes using resonant Raman spectroscopy has revealed that the outer walls of both double- and triple-walled CNTs protect the innermost tubes from interacting with their environment. The finding has allowed these technologically important nanostructures to be studied in more detail than ever before.


S- D- and TWCNTs

A double-walled carbon nanotube (DWCNT) consists of two concentric single-walled carbon nanotubes (SWCNTs) coupled together by weak van-der-Waals interactions. The inner and outer tubes can either be semiconducting or metallic. Since the outer tube is in direct contact with its environment, it can be difficult to obtain accurate information about this tube fundamental physical properties.
Thomas Hirschmann and Paulo Araujo at the Massachusetts Institute of Technology and colleagues studied individual and bundled TWCNTs. A TWCNT can be thought of as a DWCNT wrapped around a SWCNT. The researchers found that the outer tube in this structure protects the inner ones from interacting with their environment, thus allowing them to be studied more accurately. An unrolled TWCNT can be thought of as a trilayer graphene ribbon, and has all the outstanding electronic and mechanical properties that this carbon material boasts.
The team, which is led by Mildred Dresselhaus and that includes scientists from the University of Hamburg, Germany, the Nagaoka University of Technology in Japan and Shinshu University, also in Japan, used a fast working but still very sensitive Raman spectrometer. The system is able to detect and characterize the same individual TWCNT with different laser lines under identical experimental conditions. “Only a few groups in the world are equipped with such an instrument capable of characterizing individual CNTs in this way,” says Hirschmann.
“The analyses allowed us to study fundamental properties such as intertube mechanical coupling, wall-to-wall (WtW) distance and metallicity- and curvature-dependent intertube interactions,” he told nanotechweb.org. “Such knowledge will be of fundamental importance for technological applications that exploit these nanostructures.”
The researchers characterized five individual TWCNTs in detail and found that the WtW distance between the inner two tubes in all the samples ranges from 0.323 to 0.337 nm. These values are larger than the WtW distance observed in previously studied DWCNTs (0.284–0.323 nm), and lie closer to the interlayer distance in graphene itself (0.335 nm). “We also found that the intertube interactions affect innermost nanotubes differently according to which metallicity they have and that the elusive mechanical coupling between the radial breathing mode, or RBM, of concentric nanotubes does not exist, even for relatively short WtW distances of 0.323 nm,” added Hirschmann. “This is an important finding and shows that, although the TWCNTs are hybrid systems, the tubes themselves are mostly independent of one another.”
The RBM is the most important spectroscopic signature of a CNT, whose frequency of vibration is known to be inversely proportional to the tube diameter, he explained. These so-called first order Raman features provide a wealth of information on the electronic and vibrational structure of these nanomaterials.
“Our analyses also shed more light on the van-der-Waals forces mediating the interactions in concentric ordered CNTs, such as DWCNTs and TWCNTs,” said Araujo. “These low-energy interactions are important for technology applications because they affect the electronic and vibrational properties of the tubes.”
The team is now busy analysing shielding phenomena and intertube interaction effects in multi-walled carbon nanotube systems. Here, intertube interactions not only affect the measured RBMs but also other Raman features. “One of our main goals is to find better conditions in which to grow CNTs by controlling interactions between nanotubes walls,” said Hirschmann. “To this end, we are working closely with Yoong Ahm Kim and colleagues at Shinshu University, who are experts when it comes to synthesising these nanomaterials.”
The present research is detailed in ACS Nano.

< Previous CNT transistors detect cancer biomarkersChemistry resolves toxic concerns abo... Next >

?
Tel:+86-28-85241016,+86-28-85236765    Fax:+86-28-85215069,+86-28-85223978    E-mail:carbon@cioc.ac.cn,times@cioc.ac.cn,nano@cioc.ac.cn
QQ:800069832    Technical Support ac57.com
Copyright © Chengdu Organic Chemicals Co. Ltd., Chinese Academy of Sciences 2003-2025. manage 蜀ICP備05020035號-3
主站蜘蛛池模板: 欧美一区二区精品系列在线观看 | 99久久精品一区二区三区 | 欧美黄色一级视屏 | 欧美成人全部免费观看1314色 | 伊人久久影视 | a毛片免费全部在线播放毛 a毛片免费视频 | 国产精品免费观在线 | 精品国产免费观看 | 美女扒开双腿让男人爽透视频 | 国产成年人网站 | 黄色美女网站视频 | 国产精品久久免费 | 欧美在线观看高清一二三区 | 日韩一级影院 | 99视频一区 | 欧美人成毛片在线播放 | 韩国美女豪爽一级毛片 | 国产亚洲精品一区999 | 欧美人一级淫片a免费播放 欧美人与z0z0xxxx | 盈盈性影院 | 国产精品高清在线观看地址 | jizjiz日本 | 久久网站在线观看 | 亚洲男女在线 | 大毛片a大毛片 | 国产在线不卡免费播放 | 欧美极品在线 | 久久在线视频免费观看 | 欧美一区二区三区日韩免费播 | 国产精品色内内在线播放 | 欧美精品午夜毛片免费看 | 国产成人自拍在线 | 亚洲欧美在线不卡 | 国产91色综合久久免费 | 免费毛片全部不收费的 | 欧美日韩精品一区三区 | 国内精品久久久久久久影视麻豆 | 男人的天堂在线精品视频 | 免费一区二区三区视频狠狠 | 欧美日本亚洲国产一区二区 | 久久久精品一区 |