欧美伦理一区二区-91视频网页-国产高清在线视频-国产黄色在线-免费的黄色-日本精品视频在线观看

新聞動(dòng)態(tài)
NEWS
Location:Chinese Academy of Sciences > NEWS  > Carbon Nanotubes Carbon Nanotubes

Nano bundles pack a powerful punch

Come: Chinese Academy of Sciences    Date: 2012-07-26 15:51:53


Rice University researchers have created a solid-state, nanotube-based supercapacitor that promises to combine the best qualities of high-energy batteries and fast-charging capacitors in a device suitable for extreme environments.

A paper from the Rice lab of chemist Robert Hauge, to be published in the journal Carbon, reported the creation of robust, versatile energy storage that can be deeply integrated into the manufacture of devices. Potential uses span on-chip nanocircuitry to entire power plants.

Standard capacitors that regulate flow or supply quick bursts of power can be discharged and recharged hundreds of thousands of times. Electric double-layer capacitors (EDLCs), generally known as supercapacitors, are hybrids that hold hundreds of times more energy than a standard capacitor, like a battery, while retaining their fast charge/discharge capabilities.

But traditional EDLCs rely on liquid or gel-like electrolytes that can break down in very hot or cold conditions. In Rice's supercapacitor, a solid, nanoscale coat of oxide dielectric material replaces electrolytes entirely.

The researchers also took advantage of scale. The key to high capacitance is giving electrons more surface area to inhabit, and nothing on Earth has more potential for packing a lot of surface area into a small space than carbon nanotubes.

When grown, nanotubes self-assemble into dense, aligned structures that resemble microscopic shag carpets. Even after they're turned into self-contained supercapacitors, each bundle of nanotubes is 500 times longer than it is wide. A tiny chip may contain hundreds of thousands of bundles.

For the new device, the Rice team grew an array of 15-20 nanometer bundles of single-walled carbon nanotubes up to 50 microns long. Hauge, a distinguished faculty fellow in chemistry, led the effort with former Rice graduate students Cary Pint, first author of the paper and now a researcher at Intel, and Nolan Nicholas, now a researcher at Matric.

The array was then transferred to a copper electrode with thin layers of gold and titanium to aid adhesion and electrical stability. The nanotube bundles (the primary electrodes) were doped with sulfuric acid to enhance their conductive properties; then they were covered with thin coats of aluminum oxide (the dielectric layer) and aluminum-doped zinc oxide (the counterelectrode) through a process called atomic layer deposition (ALD). A top electrode of silver paint completed the circuit.

"Essentially, you get this metal/insulator/metal structure," said Pint. "No one's ever done this with such a high-aspect-ratio material and utilizing a process like ALD."

Hauge said the new supercapacitor is stable and scaleable. "All solid-state solutions to energy storage will be intimately integrated into many future devices, including flexible displays, bio-implants, many types of sensors and all electronic applications that benefit from fast charge and discharge rates," he said.

Pint said the supercapacitor holds a charge under high-frequency cycling and can be naturally integrated into materials. He envisioned an electric car body that is a battery, or a microrobot with an onboard, nontoxic power supply that can be injected for therapeutic purposes into a patient's bloodstream.

Pint said it would be ideal for use under the kind of extreme conditions experienced by desert-based solar cells or in satellites, where weight is also a critical factor. "The challenge for the future of energy systems is to integrate things more efficiently. This solid-state architecture is at the cutting edge," he said.

Co-authors of the paper include graduate student Zhengzong Sun; James Tour, the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science, and Howard Schmidt, adjunct assistant professor of chemical and biomolecular engineering, all of Rice; Sheng Xu, a former graduate student at Harvard; and Roy Gordon, the Thomas Dudley Cabot Professor of Chemistry at Harvard University, who developed ALD.

Read the abstract at http://www.sciencedirect.com/science/article/pii/S0008622311005549

Download high-resolution images at
http://media.rice.edu/images/media/NewsRels/0817_SEM_images.jpg
http://media.rice.edu/images/media/NewsRels/0817_Nanocapacitors_V2.jpg
http://media.rice.edu/images/media/NewsRels/0817_Transfer_scheme.jpg

CAPTIONS:

Bundles of carbon nanotubes coated with alumina and aluminum-doped zinc oxide are the heart of a solid-state supercapacitor developed by Rice University scientists for energy storage. (Credit: Hauge Lab/Rice University)

(Nanocapacitors)

Carbon nanotube bundles are at the center of supercapacitors developed at Rice University. Arrays of nanotube bundles are coated via atomic layer deposition to create thousands of microscopic devices in a single array. The electron microscope images at right show the three-layer construction of one of the supercapacitors, which are about 100 nanometers wide. (Credit: Hauge Lab/Rice University)

(Transfer scheme)

A method developed at Rice University allows bundles of vertically aligned single-wall carbon nanotubes to be transferred intact to a conductive substrate. Metallic layers added via atomic layer deposition create a solid-state supercapacitor that can stand up in extreme environments. (Credit: Hauge Lab/Rice University)

< Previous Simple EBID process delivers robust n...STM calculations put atoms in a diffe... Next >

?
Tel:+86-28-85241016,+86-28-85236765    Fax:+86-28-85215069,+86-28-85223978    E-mail:carbon@cioc.ac.cn,times@cioc.ac.cn,nano@cioc.ac.cn
QQ:800069832    Technical Support ac57.com
Copyright © Chengdu Organic Chemicals Co. Ltd., Chinese Academy of Sciences 2003-2025. manage 蜀ICP備05020035號(hào)-3
主站蜘蛛池模板: 日本亚欧乱色视频在线观看 | 久久国产成人精品国产成人亚洲 | 最新亚洲人成网站在线影院 | 久草视频免费播放 | 亚洲无线一二三区2021 | 加勒比毛片 | 91成年人 | 2345成人高清毛片 | 国内精品视频九九九九 | 搞黄网站在线观看 | 欧美一级免费在线观看 | 久久免费视频播放 | 91精品啪在线看国产网站 | 欧美大片毛片aaa免费看 | 国产精品久久久久久一区二区 | 日本xxxb孕交| 亚洲精品三级 | 很黄很暴力深夜爽爽无遮挡 | 亚洲韩国日本欧美一区二区三区 | 性精品| 亚洲欧洲国产成人精品 | 美女张开腿给男生桶下面视频 | 成人亚洲精品一区二区 | 国产高清在线精品一区在线 | 黄色欧美网站 | 99久久精品免费看国产免费 | 精品在线视频播放 | 中文字幕一区二区小泽玛利亚 | 亚洲精品在线免费看 | 九九久久国产精品 | 久久观看午夜精品 | 国产亚洲欧美在线播放网站 | 久久亚洲精品永久网站 | 亚洲精品一区二区三区第四页 | 老色99久久九九精品尤物 | 久久夜色邦福利网 | 在线观看国产精品一区 | 国产一级片免费观看 | 播放一级毛片 | 亚洲网站一区 | 久久免费视频在线观看 |