欧美伦理一区二区-91视频网页-国产高清在线视频-国产黄色在线-免费的黄色-日本精品视频在线观看

新聞動態(tài)
NEWS
Location:Chinese Academy of Sciences > NEWS  > Graphene Graphene

‘Magic-angle graphene’ behaves like a high-temperature superconductor

Come: Chinese Academy of Sciences    Date: 2018-03-14 15:33:21


 A new experimental platform based on two misaligned graphene layers could be used to investigate strongly correlated physics – that is, the physics of systems in which the interactions between electrons lead to novel phenomena. The platform, which can be tuned by simply applying an electric field, could help shed important light on the underlying mechanisms at play in superconductors, in particular high-temperature ones based on cuprates, for which a fundamental understanding is still lacking.


A team of researchers led by Pablo Jarillo-Herrero of the Massachusetts Institute of Technology (MIT) in the US made the platform by stacking two sheets of atomic-thick carbon (graphene) on top of each other. They then twisted the sheets so that the angle between them, known as the (theoretically predicted) “magic angle”, was 1.1°. They found that the material became a superconductor (that is, it conducted electricity without resistance) at 1.7 K.

“We were not looking for superconductivity when we began our experiments,” explains Jarillo-Herrero. “We chose to study these structures because there were some theoretical predictions that interesting electronic properties would occur in the graphene moiré superlattice if the two layers were stacked at this angle. Our intuition also told us that there would be some interesting physics, but what we discovered went far beyond what we had anticipated.”

The researchers studied the conductivity of the graphene sheets by applying a voltage to them and then measuring the current that circulated through them. They also measured the density of the particles that carry electronic charge inside the sheets.

Two breakthrough results

“We found two things: first that we can electrically tune the graphene system so that it becomes a correlated insulator, which can happen thanks to electrons localized in the moiré superlattice. This ‘Mott’ insulator is a material that should be a metal but which, because of strong repulsion between electrons, does not conduct. We reported this result in the first of our two Nature papers published this week.

“Secondly, we found that by adding a few extra charge carriers to this insulator state (by applying a small electric field), we could tune the graphene superlattice so that it became a superconductor. This result is detailed in our second Nature paper.

The researchers say that graphene superlattices containing a record-low 2D charge carrier density of about just 1011 per cm2can become superconducting. This means that they can superconduct electricity with just 10-4 of the electron density of conventional superconductors (that work at temperatures near absolute zero, and which can be described by the well-established Bardeen–Cooper–Schreiffer theory of superconductivity).

This behaviour (the presence of an insulating state so close to the superconducting one) is characteristic of so-called unconventional, high-temperature superconductors, known as cuprates. These complex copper oxides can conduct electricity without resistance at the relatively “high” temperature of 133 K. Although physicists have been studying these materials for decades now, in their quest to make superconductors that work at even higher temperatures, and ideally at room-temperature, they are still unable to explain the fundamental mechanisms at play in them.

Magic-angle graphene is magic

“The technique to make our new misaligned graphene sounds simple, but it took years to perfect,” says Jarillo-Herrero. “The good thing, however, is that there are several groups around the world that can carry it out. There are also many other groups that will now be able to replicate it too and so use the platform to study unconventional superconductivity in a simple system.”

Normally, when researchers study high-temperature superconductors, they need to subject the materials to extremely high magnetic fields, he explains. With graphene, they might be able to do this by simply applying a modest magnetic field.

“First and foremost, our discovery represents an advance in terms of fundamental science, and we hope that it will allow us to gain insight into the properties of strongly correlated systems, such as high-temperature superconductors and quantum spin liquids,” he tells nanotechweb.org. “What is more, our platform is a general one and could be applied to any 2D material, not just graphene.”

Quantum computers and photodetectors might benefit

Although there might be many potential applications most of these are likely to be a way off, realistically speaking, he adds. “For example, the most advanced technology to make prototype quantum computers today are based on superconducting devices. Magic-angle graphene superlattices could offer us a new type of electrically tunable superconductor, and who knows, they might one day be exploited in quantum computation and information technologies.

“Superconductors are also used in many other applications, such as ultrasensitive detectors of light, so our result may perhaps have an impact there too.”

There is no doubt that graphene is an exceptional material in so many ways. Its unique properties, such as extremely high mechanical strength (it is stronger than steel) and extremely high electrical conductivity, with electrons zipping through it at near-ballistic speeds, have been known for a while now. Although researchers had already shown that it could behave like a superconductor before too, the superconductivity was only observed when it was in contact with other superconducting materials. What is more, this could mostly be explained by the Bardeen–Cooper–Schreiffer theory, so it was considered to be conventional.

“The relatively high superconducting temperature of 1.7 K of twisted bilayer graphene that we observed, with its charge carrier density of just 1011 per cm2, now also makes this material among the strongest coupling superconductors known,” adds Jarillo-Herrero. He says that the material might be working in a regime close to the crossover between the Bardeen–Cooper–Schrieffer regime and a Bose–Einstein condensate (a state of matter in which all the particles in a system condense into a single state), but confirming or refuting this will be the subject of future research.

< Previous Graphene meets the standard for industryGraphene resonators can stand the heat Next >

?
Tel:+86-28-85241016,+86-28-85236765    Fax:+86-28-85215069,+86-28-85223978    E-mail:carbon@cioc.ac.cn,times@cioc.ac.cn,nano@cioc.ac.cn
QQ:800069832    Technical Support ac57.com
Copyright © Chengdu Organic Chemicals Co. Ltd., Chinese Academy of Sciences 2003-2025. manage 蜀ICP備05020035號-3
主站蜘蛛池模板: 亚洲午夜精品一级在线 | 亚洲欧美日韩综合在线一区二区三区 | 欧美一级毛片欧美毛片视频 | 亚洲男人天堂2018 | 亚洲在线天堂 | 亚洲美女黄色片 | 欧美一级www片免费观看 | 亚洲视频欧美视频 | 日韩在线一区二区三区 | 大臿蕉香蕉大视频成人 | 亚洲国产精品一区二区第四页 | 久久国产经典视频 | 久草视频中文在线 | 成年人网站在线观看视频 | 日韩一区二区三区四区不卡 | 天天摸天天爽视频69视频 | 亚洲一区在线观看视频 | 日本三级一区二区三区 | 国产精品九九久久一区hh | 久久亚洲精品无码观看不卡 | 国产一区二区三区四区在线观看 | 精品午夜国产在线观看不卡 | 国产精品久久一区 | 福利片成人午夜在线 | www成人国产在线观看网站 | 欧美全免费aaaaaa特黄在线 | 成人高清在线观看播放 | 久青草国产手机在线观 | 欧美变态一级毛片 | 精品一区二区三区免费观看 | 免费国产一区二区在免费观看 | 久久综合给合久久狠狠狠97色69 | 在线免费观看国产 | 亚洲国产成人综合 | 亚洲男人的天堂在线 | 国产欧美日韩精品第一区 | 91香蕉视| 久久香蕉国产线看免费 | 亚州在线播放 | 欧美一区二区三区在线观看 | 久久精品一品道久久精品9 久久精品一区 |