欧美伦理一区二区-91视频网页-国产高清在线视频-国产黄色在线-免费的黄色-日本精品视频在线观看

新聞動態(tài)
NEWS
Location:Chinese Academy of Sciences > NEWS  > News in field Graphene

Inkjet-printed graphene makes good strain gauge

Come: Chinese Academy of Sciences    Date: 2018-01-05 14:20:30


 Researchers in the UK and Italy have made the first ever inkjet-printed graphene strain gauge sensor on paper. The device has a gauge factor of up to 125 even when very small strains are applied, and its overall sensitivity and performance can be tuned by different printing parameters, such as drop-spacing and number of printing passes. It might be used in applications like robot skin and health monitoring applications, and in smart packaging.

Although they provide valuable information about mechanical stress, conventional strain gauges can be bulky, costly to install and maintain, and often require complex signal processing schemes. Low-cost, flexible and easy-to-integrate strain gauges would therefore be much better, and sensors that can be printed onto a variety of substrates are a promising class of device that researchers are looking into.

Graphene-based strain sensors are especially attractive thanks to the carbon sheet  high conductivity, mechanical strength and flexibility. A research team led by Gianluca Fiori at the University of Pisa and Cinzia Casiraghi at the University of Manchester has now succeeded in making the first graphene strain gauge that is directly fabricated on a paper substrate via inkjet printing. The process developed by the team greatly simplifies how such devices can now be built.

Fiori, Casiraghi and colleagues, made their strain gauge by depositing conductive lines made from a network of graphene flakes (dispersed in water as the solvent) on a PEL P60 paper substrate using a simple Dimatix DMP-2850 inkjet printer. This printer can create and define patterns over an area of about 200 mm x 300 mm and handle substrates that are up to 25 mm thick. A waveform editor and a drop-watch camera system was used to manipulate electronic pulses to the jetting device for optimizing the drops  characteristics as they were ejected from the nozzle.

 We see a change in the conductivity of the lines when we apply different degrees of strain to the paper,  explains Fiori. This occurs because, at the microscopic level, the different degrees of strain lead to larger (compressive) or smaller (tensile) interactions between the graphene flakes, which at the macroscopic level, translate into a change in conductivity.

Gauge factor of 125

The researchers engineered their strain sensor by looking at the electrical behaviour of the graphene lines under different applied strains, ?, and for different printing parameters – for example, the number of printing passes and the drop spacing. As expected, the larger the number of printing passes (that is, printed layers), the smaller the resistance, R, of the graphene line. The sensitivity, S, of the device increases with the number of layers and as the substrate becomes more curved. Indeed, it reaches more than 100% for a curvature of 1 cm (that is, a strain of 1.25%).

The device also has a gauge factor (GF) of 125. This factor describes the change in resistance, ΔR, coming from mechanical deformation and can be expressed as GF= ΔR/R0/? = S/?, where R0 is the nominal resistance.

Towards heterostructure inkjet-printed strain gauges

Inkjet printing allows us to simply and quickly fabricate a sensor directly on the surface to be inspected, which opens up the possibly of introducing arrays of sensors over large areas or multi-sensing, by introducing different types of sensors in the array, says Fiori. The fact that the solvent in which the graphene flakes are dispersed is water is also a breakthrough in ink formulation in this context.

 We might be able to exploit combinations of different materials too, such as graphene and hexagonal boron nitride (hBN), which we have already starting looking into during this study.  Our preliminary results show that these heterostructure devices perform better than those based on graphene alone, so we are now studying these further and optimizing them, since this technology might allow for new types of efficient and multifunctional strain gauges, he tells nanotechweb.org.

< Previous Graphene variants promise new possibi...Graphene composite provides wireless ... Next >

?
Tel:+86-28-85241016,+86-28-85236765    Fax:+86-28-85215069,+86-28-85223978    E-mail:carbon@cioc.ac.cn,times@cioc.ac.cn,nano@cioc.ac.cn
QQ:800069832    Technical Support ac57.com
Copyright © Chengdu Organic Chemicals Co. Ltd., Chinese Academy of Sciences 2003-2025. manage 蜀ICP備05020035號-3
主站蜘蛛池模板: 精品视自拍视频在线观看 | 欧美日韩午夜视频 | 亚洲九九 | 本道久久综合88全国最大色 | 欧美在线香蕉在线现视频 | 成人综合国产乱在线 | 韩国一级特黄毛片大 | 中国老太性色xxxxxhd | 精品国产亚洲一区二区在线3d | 国产欧美在线视频 | yy毛片 | 亚洲精品在线网站 | 91精品成人免费国产片 | 色夜视频| 国产三a级日本三级日产三级 | 亚洲精品欧美日韩 | 免费a级黄毛片 | 国产欧美日韩综合二区三区 | 国产精品美女久久久久网站 | 午夜三级毛片 | 99综合视频| 欧美韩国xxx| 精品国产一区二区三区免费 | 一级在线视频 | 国产高清在线精品一区二区三区 | 久久久这里只有精品免费 | 欧美69xx | 黑人特黄aa毛片 | 久久看精品| 超级香蕉97视频在线观看一区 | 日本午夜精品 | 亚洲欧洲日本天天堂在线观看 | 超级碰碰碰视频视频在线视频 | 欧美一级特黄真人毛片 | a三级黄色片 | 日韩不卡一二三区 | 国产一级高清 | 波多野结衣被强在线视频 | 欧美成人高清免费大片观看 | 免费岛国小视频在线观看 | 国产精品一区二区三区免费 |